Navigation:  Step-By-Step Examples >

Example 8: Brick Patch Test

Previous pageReturn to chapter overviewNext page

Problem Description

This is a patch test for a unit cube [Ref. 4 pp3-20].  The cube is modeled with 7 eight-node brick elements.  Nodal coordinates, element connectivity and boundary conditions are given in the following tables.  Boundary conditions are given as forced displacements.  No additional loads are prescribed.

 

Material:  E = 1.e6 psi; ν = 0.25

 

Find stresses for each element.

 

Example 8 Brick Patch Test1

 

Nodal coordinates (inch)

 

Node

X

Y

Z

1

0.249

0.342

0.192

2

0.826

0.288

0.288

3

0.85

0.649

0.263

4

0.273

0.75

0.23

5

0.32

0.186

0.643

6

0.677

0.305

0.683

7

0.788

0.693

0.644

8

0.165

0.745

0.702

9

0

0

0

10

1

0

0

11

1

1

0

12

0

1

0

13

0

0

1

14

1

0

1

15

1

1

1

16

0

1

1

 

 

Displacement field

u = 0.001 * (2x + y + z) / 2

v = 0.001 * (x + 2y + z) / 2

w = 0.001 * (x + y + 2z) / 2

Forced displacements (inch) on boundary

 

NODE

Dx

Dy

Dz

9

0

0

0

10

0.001

0.0005

0.0005

11

0.0015

0.0015

0.001

12

0.0005

0.001

0.0005

13

0.0005

0.0005

0.001

14

0.0015

0.001

0.0015

15

0.002

0.002

0.002

16

0.001

0.0015

0.0015

 

All strains are constant. For example Example 8 Brick Patch Test4

Example 8 Brick Patch Test5

 

 

Element Connectivity

 

Element

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

1

1

2

3

4

5

6

7

8

2

4

3

11

12

8

7

15

16

3

9

10

2

1

13

14

6

5

4

2

10

11

3

6

14

15

7

5

9

1

4

12

13

5

8

16

6

9

10

11

12

1

2

3

4

7

5

6

7

8

13

14

15

16

 

Suggested Modeling Steps

Set proper units from Settings and Tools > Units & Precisions.

Input the nodal coordinates by Tables > Nodes.

Modify the default material by Tables > Materials.

Input the bricks by Tables > Bricks.  Use the default material (=1).

Input the boundary conditions by Tables > Supports.  Enter the support flag “111000” for each support.  Enter the forced displacements according to the table above.

Set the analysis options by Analysis > Analysis Options.  Choose the model type “3D Brick”.

 

Results

The comparison of stresses (psi) between the program and the referenced results is excellent.  Each stress component is uniform in all seven elements.

 

 

Sxx

Syy

Szz

Sxy

Syz

Sxz

ENERCALC 3D

1999.982

1999.982

1999.982

399.999

399.999

399.999

[Ref. 4]

2000

2000

2000

400

400

400

 

Comments

The brick element passes the patch test.  Therefore, “the results for any problem solved with the element will converge toward the correct solution as the elements are subdivided.” [Ref. 4]  The tiny differences in stresses are due to the penalty approach employed in support enforcement.